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SUMMARY 

A numerical method is developed to determine the periodic solution of a 
nonlinear partial differential equation with unsteady boundary conditions. More 
specifically, the analysis treats the unidimensional, time-varying diffusion 
equation with a nonlinear sink term. The equation that is solved follows from a 
suggested experiment whereby the homogeneous recombination and diffusion rates 
of oxygen atoms are determined by studying the spatial decrease of the amplitude 
of the time variation in concentration of atoms. In the numerical method, the 
partial differential equation and boundary conditions are approximated by a set 
of difference equations that are then solved on an electronic computer. An ini- 
tial condition Mat is not specifically known is required in the numerical pro- 
cedure. It is shown that an arbitrary choice for the initial condition merely 
produces a transient that decays as the time variable increases in value. The 
remaining solution is periodic and independent of the initial condition. Iso- 
metric plots, obtained from an automatic plotter, show the effect of the tran- 
sient on the solution. The periodic solution characterized by a set of upper 
and lower envelopes, within which the concentration varies, is a l s o  illustrated 
by curves from an automatic plotter. To study the functional dependence of the 
envelopes on the frequency of the concentration variation and on the sink term 
coefficient, a new variable, called the penetration depth, is introduced to 
relate the difference in values between the upper and lower envelopes to the fre- 
quency and sink term coefficient. A discussion is included on the use of the 
penetration depth curves in a proposed experiment to determine the recombination 
and diffusion rate constants. Discussion is also included on the accuracy of 
the numerical method and on a linearized sink term approximation to the nonlinear 
partial differential equation. 

INTRODUCTION 

In the present report a numerical solution is given for the nonlinear 
problem of unsteady diffusion in a ternary mixture of diatomic molecules, dis- 
sociated atoms, and an inert gas. The problem follows from a suggested experi- 
ment (see ref. 1) whereby the homogeneous reaction and diffusion rates of oxygen 
atoms can be determined from the decay of the time variation in concentration of 
atoms. In the proposed experiment a periodic concentration of atoms is formed 
by dissociation at one end of a test cell. The atoms diffuse into the test cell 
and recombine, thereby providing a time-varying supply of freshly recombined 
molecules throughout the cell. Associated with this process is a decrease in 



the amplitude of concentration variation from the inlet end of the test cell to 
the opposite end. This decrease depends on the oscillation frequency of the con- 
centration and is, in part, due to the loss of atoms in the recombination proc- 
e s s .  To interpret the data obtained from such an experiment, a relation is 
required for the dependence of the amplitude decrease on the frequency and on the 
recombination rate. To this end, a periodic solution of the unsteady multicompo- 
nent diffusion equation is needed. The equation that describes the process is 
derived in reference 1. To lowest order the equation is linear except for a sink 
term, which represents the atom recombination process. A closed-form solution is 
not available for such an equation. Therefore, to gain a qualitative understand- 
ing of the problem the nonlinear sink term was first linearized (in ref. 1). 
closed-form solution was then obtained from the linearized equation. In the 
present report a numerical solution is found for the equations with the sink term 

A 

nonlinear form. in its 

NOTATION 

binary diffusion coefficient for species i and j 

D23 On 
on2 D13 + On3 D12 

characteristic diffusion constant, 

decay fraction (see eq. (17)) 

incomplete elliptic integral of the first kind with argument (p and 
modulus C 

A 7  stability relation, ~ 

(nr; l 2  
recombination rate constant 

dimensionless nonlinear sink strength, t; Kr 
\ -  / 

dimensionless linear sink strength, e; on2h) K r j i  

characteristic length appearing in dimensionless coordinate 

total number of points in grid defining length L 

number density for species i 

number density defined on inlet plane 

zero-order number density, + on3 

dimensionless frequency, - 

coordinate variable measuring distance from inlet plane 

L2W 
D 

dimensionless perturbation parameter (see eq. (be) and discussion 
following that equation) 
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transient magnitude (see eq. (15) ) 
"1 dimensionless atom concentration, - 
O n  

dimensionless atom concentration that is a numerical approximation to 
~[(n - 1 1 ~ ~ ~  (m - 1 1 ~ 7 - I  

average value of p( 6 , ~ )  

maximum value of p ( 5 , ~ )  with respect to time 

minimum value of p ( 5 , ~ )  with respect to time 

Z dimensionless coordinate variable, - L 
penetration depth corresponding to decay fraction E (see eq. (19)) 

Dt dimensionless time variable, - 

angular frequency 
L2 

Subscripts 

species kind 

grid number corresponding to variable 5 

atoms 

molecules 

inert gas 

Subscript o appearing before a symbol indicates zeroth order in terms of 
an expansion with respect to A (see eq. (u), ref. 1) 

m 

Superscript 

grid number corresponding to variable T 

ANALYSIS 

In the following two sections the equations given are those required to 
obtain the solution for the problem of diffusion and recombination with time- 
varying boundary conditions. In the first section the pertinent equations 

3 



derived in reference 1 are reviewed. These equations apply to a one-dimensional 
system where diffusion and recombination occur with zero stream velocity in a 
region between two infinite planes and where the species concentration is varied 
on the inlet plane. This specialization also presupposes that reactions on the 
far boundary plane are negligible. A closed-form solution for these equations is 
not available; therefore, recourse is made to numerical methods. In the second 
section, the numerical methods that are used to obtain the solution are described. 
Here the diffusion equation and boundary conditions are approximated by a set of 
difference equations. The difference equations are then put into a form suitable 
for programming on an electronic computer. 

Basic Equations 

The basic equations to be solved were derived in reference 1. In this 
reference the general multidimensional differential equation for atom concentra- 
tion is given by equation (54a). 
zero stream velocity in a one-dimensional system representing diffusion between 
two parallel planes a unit distance apart. 
series expansion described in reference 1 will be considered; therefore, the sub- 
scripts and superscripts will be dropped. The differential equation then becomes 

Discussion will be limited in this report to 

Also, only one term of the double 

The variables 5 ,  r, and p are dimensionless quantities representing distance 
from the plane where the atom concentration is being varied (inlet plane), time, 

f and concentration, respectively. The quantity k(p)  is the sink term resulting 
from the homogeneous recombination of atoms. The transformation equations that 
relate the dimensionless quantities to their dimensional equivalents are 

5 =(3z 

7 =($) t 
w = (6;) w 

where W is a dimensionless frequency, Z is the variable measuring distance 
between the two planes that are separated a distance L apart, and D is a 
diffusion constant defined by equation (54d) in reference 1; that is, 
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The parameters and 0113 a r e  the  zeroth order expressions (see r e f .  1) f o r  
the  f r ac t iona l  number dens i t ies  of molecular oxygen and the  i n e r t  gas, respec- 
t i ve ly .  These terms a re  obtained f r o m  an expansion about a uniform s t a t e  of t he  
gas and therefore  are constant.  

The t o t a l  number densi ty  i s  given by on = + 0113. The var iable  nl is  
the f i r s t - o r d e r  number densi ty  of atomic oxygen. The quan t i t i e s  D12,D13, and 
D23 a r e  binary d i f fus ion  constants for atomic oxygen and molecular oxygen, 
atomic oxygen and the i n e r t  gas, and molecular oxygen and the i n e r t  gas, respec- 
t i ve ly .  
When the atoms l o s t  by w a l l  react ion a re  considered negl igible  compared t o  those 
l o s t  i n  the homogeneous react ion,  the problem becomes one of solving the follow- 
ing p a r t i a l  d i f f e r e n t i a l  equation: 

The s ink term k(p) = -krp2 i s  given by equation (66a) of reference 1. 

with near wall  boundary condition given by 

and w i t h  the  far w a l l  boundary condition given by equation (96) of reference 1 

and i n i t i a l  condition given by 

where 

The number A i s  a dimensionless per turbat ion parameter (see eq. (lo), r e f .  1) 
and i s  defined as the  r a t i o  nl(0),,/,(o) where nl(0)m i s  the  m a x i m u m  con- 
cent ra t ion  of atomic oxygen and n(0)  is  the t o t a l  number density.  The zero i n  
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t he  parentheses ind ica tes  t h a t  these concentrations a r e  measured on the  in le t  
plane, 6 = 0. The constant Kr i s  defined as the  reac t ion  o r  recombination rate 
constant and has the  dimension ( cc/particle)2sec'1. 

Before a so lu t ion  can be found f o r  equations (4), t he  i n i t i a l  condition, 
p ( t , O ) ,  must be spec i f ied .  
t i o n  t h a t  results when the  time approaches i n f i n i t y .  The exact i n i t i a l  condi- 
t ions  may not be obtainable f o r  t h i s  problem. 
repor t  requires  t h a t  an i n i t i a l  condition be spec i f ied .  It turns  ou t  t h a t  t he  
per iodic  so lu t ion  i s  independent of the  conditions chosen, but t he  rate of con- 
vergence t o  t h e  per iodic  solut ion does, i n  f a c t ,  depend on the i n i t i a l  conditions 
specif ied.  This i s  exemplified l a t e r .  

The solut ion of most i n t e r e s t  i s  the per iodic  solu- 

The numerical method used i n  t h i s  

Numerical Equations 

A simple method t h a t  may be used t o  obtain an approximate so lu t ion  t o  

g and T a re  defined a r e  
equations (4)  i s  t h a t  of f i n i t e  differences.  Here the  continuum of points  i n  the  
( 6 , ~ )  plane over which the  independent var iab les  
approximated by a set of d i sc re t e  points t h a t  define a mesh or gr id .  The p a r t i a l  
der ivat ives  f o r  the  continuum a re  then approximated by a s e t  of f in i te -d i f fe rence  
r e l a t ions  expressed i n  terms of these points .  These difference r e l a t ions  y i e l d  
equations t h a t  reduce t o  a set of nonlinear a lgebraic  equations t h a t  can then be 
solved. 

Assume t h a t  the  mesh s i z e  increments a r e  given by AE and AT. The independ- 
en t  var iab les  6 and T a re  expressed i n  terms of t he  s e t  of points,  denoted by 
the  in tegers  n and m, through the  r e l a t ions  

and 
E = ( n  - 1 ) ~ g  n = 1, 2, . . 

T = ( m  -  AT m = 1, 2,  . . 

From equation (5a) one notes t h a t  

ng = ( N  - 1)-1 

where N i s  an integer  denoting the  number of gr ids  
inlet  and far boundary planes.  The approximation of 

between and including the  
p[ (n  - ~ ) A E ,  ( m  - ~ ) A T J  i s  

denoted by pg. 
r e l a t ions  by the  following expressions 

The p a r t i a l  der ivat ives  a r e  approximated i n  terms of difference 
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a7 AT 

In terms of these relations, the partial differential equation (&a) becomes 

The boundary and initial conditions, equations (4b)-(4d), are approximated by 

where 

Pn = f[(n - 1)~~l 

n = l , 2 , .  . . , N ;  m = l , 2 , .  . . 

Once Ag, AT, and f are specified, the problembecomes one of solving simulta- 
neously the above system of algebraic equations. It turns out that the choice of 
the function f affects the rate of convergence of the solution p$ to the 
desired periodic solution. This point will be discussed in the next section. 
The values that are used for Ag and AT affect the accuracy and numerical sta- 
bility of the solution. One observes first that in the limit as A6 and AT tend 
to zero, equations (7a) to (7c) are exact expressions for the partial derivatives. 
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Therefore, one expects that by taking the increments sufficiently small, the 
numerical solution can be made as accurate as desired. This is correct except 
that as one increment is reduced the other increment must accordingly be reduced. 
The spacings between the grids therefore are not independently arbitrary, but are 
functionally related through a "stability" relation that insures numerical sta- 
bility. 
given by 

The stability relation for the difference equation, equation ( 8 ) ,  is 

where 
1 h l -  6 

This relation was not derived analytically, but was discovered by trial. The 
necessity for such a relation, including an analytically determined expression 
applicable to linear heat or diffusion problems, is discussed in detail in 
reference 2. 

Equations (8) and (9) are not yet in a form adaptable for machine computa- 
tion. 
and (9b) in such a manner as to obtain the expressions 

A more desirable form is obtained by rearranging terms in equations (8) 

and 

Equations (ll), (12), (9a), and (9c) along with a given expression for f are a 
complete set of numerical equations that may be solved for the dependent variable 
11.:. 

SOLUTION 

Before proceeding with the detailed description of the solution, it will be 
helpfUl to first describe the nature of the numerical results. 
schematically the pertinent features of the solution. When the value of dimen- 
sionless time T is less than zero, the dimensionless concentration p ( 5 , ~ )  is 
zero for all values of the spatial coordinate 6 .  Since such an initial condi- 
tion is not an initial condition for the periodic solution, the variation in con- 
centration changes from the initial to the final periodic solution. This transi- 
tion is referred to here as the transient part of the solution. One observes in 
figure 1 that the transient part of the solution changes until at a time 

Figure 1 shows 
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corresponding t o  period number ms it becomes periodic.  From time -rS = ms(2rc/W) 
and continuing inde f in i t e ly  the  var ia t ion  i s  periodic.  The per iodic  so lu t ion  
p ( k , ~ )  when projected on the  (p,E) plane shows a va r i a t ion  between a maximum and 
minimum with respect  t o  time represented by two envelopes. These envelopes ind i -  
cate  t h a t  the  decrease i n  the  va r i a t ion  i n  concentration between the  i n l e t  and 
far boundary planes i s  func t iona l ly  r e l a t ed  t o  the i n l e t  plane concentration fre- 
quency W and the  value of t he  s ink term coef f ic ien t  kr. The decrease w i l l  be 
characterized by a penetration depth, EE, t h a t  i s  defined as the  depth a t  which 
the  per iodic  concentration has decayed t o  some spec i f i ed  f r ac t ion  of i t s  input 
value.  The dependence of the  penetration depth on the  parameters W and kr is  
then determined. The fea tures  of t he  t r ans i en t  and the  per iodic  pa r t s  of t he  
so lu t ion  described above a r e  discussed i n  d e t a i l  i n  the  following two sec t ions .  

Solution - Transient Par t  

The difference equations, equations (ll), (12) ,  (9a) ,  and (9c ) ,  were pro- 
grammed f o r  an IBM 7090 e lec t ronic  computer using two independent sets of i n i t i a l  
conditions.  The solut ions obtained from each i n i t i a l  condition were separated 
i n t o  two par t s ,  one pa r t  i s  i d e n t i f i e d  as  being a t r ans i en t  p a r t  and the  other  as 
a periodic pa r t .  The funct ional  character of the t r ans i en t  pa r t  including decay 
time was dependent on the  type of i n i t i a l  condition used while the per iodic  solu-  
t i o n  i s  independent of the  i n i t i a l  condition. The two i n i t i a l  conditions t h a t  
were used a r e  

1) p; = 0 

2) pk = cos2[ (3/2) fl(n - 1)Ag 1 

where 

n = l , 2 , .  . . , N  

For convenience, equations (13) and (14)  w i l l  be r e fe r r ed  t o  a s  conditions (1) 
and ( 2 ) ,  respect ively.  Condition (1) (eq. (13)) approximates what one would 
expect i n  an experiment immediately a f t e r  the d issoc ia t ion  process f o r  atoms i s  
s t a r t ed .  Condition (2 )  i s  a r b i t r a r y  and ac tua l ly  would be d i f f i c u l t  t o  achieve 
experimentally, but it was  used t o  demonstrate that  the  desired per iodic  so lu t ion  
i s  independent of t he  i n i t i a l  condition. Physically,  t h i s  condition i s  equiva- 
l e n t  t o  d i s t r ibu t ing  atoms between the two planes i n  such a manner t h a t  the  atom 
concentration i s  dense both a t  the  i n l e t  plane and a t  a point  two-thirds of t he  
way across the t e s t  c e l l  from the i n l e t  plane. 

The t r ans i en t  t h a t  occurs i n  the  t r ans i en t  p a r t  of the  solut ion i s  defined 
f o r  convenience i n  the  numerical analysis  as  follows: 
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EnJ pn % - pnmJ n = 1, 2, . 

where p n Q  
indicated by % and which i s  i n  phase with the  so lu t ion  pnmJ, t h a t  i s ,  

i s  the  desired per iodic  so lu t ion  a t  some s u f f i c i e n t l y  l a rge  t i m e  

2 d  ms = mJ + - 
W AT 

where M i s  an in teger  and mJ i s  given by 

where J i s  an in teger .  Equation (15) defines the  t rans ien t ,  but i n  program- 
ming the difference equation, equation (ll), f o r  the two i n i t i a l  conditions 
c i ted ,  it w a s  s u f f i c i e n t  t o  l e t  M = 1 and J = 1, 2, . . . , and then t e s t  
whether EnJ - 0 t o  determine t r ans i en t  decay. The quant i ty  EnJ serves as a 
measure of the  amount the  solut ion d i f f e r s  from the  per iodic  solut ion measured 
every per iod from T = 0. When EnJ i s  zero, then the  requirement f o r  a pe r i -  
odic solut ion i s  met; t h a t  is, ~ ( E , T )  = ~ [ E , T  + ( 2 f i / W ] .  I n  the numerical work 
E ~ J  was considered negl ig ib le  when E < I nJI 

The e f f e c t  of the  decay of the  t r ans i en t  i s  observed i n  the isometric p lo t s  

5 = 1 ( i . e . ,  N = 41) under a f e w  time designations on each f igure .  
given i n  f igure  2. For comparison purposes, the  value of the  t r ans i en t  E i s  
included f o r  
Figures 2 ( a ) ,  2 ( c ) ,  and 2(e)  apply t o  i n i t i a l  conditions specif ied by equation 
(13).  
(14) .  
t h a t  i s ,  when the  atom concentration a t  the  inlet  plane i s  held s ta t ionary .  
Closed-form so lu t ions  a r e  obtainable, s ince there  is  a s teady-state  so lu t ion  i n  
t h i s  case, and these provide a means of checking the numerical techniques used. 
Also s ince there  are fewer events happening, t h a t  is, the  i n l e t  plane concentra- 
t i o n  i s  not varying i n  time, one can more r ead i ly  a t t ach  s ignif icance t o  the  
t r ans i en t  p a r t  of t he  solut ion.  I n  f igure  2 ( a ) ,  the t r ans i en t  decay time i s  
defined as the t i m e  required f o r  atoms t o  d i f fuse  i n t o  an empty system and con- 
t inue d i f fus ing  u n t i l  t h a t  equilibrium s i t u a t i o n  i s  reached wherein the  amount of 
atoms enter ing the  system i s  balanced by the  amount l o s t  by recombination a t  a l l  
points between the  two planes. Figure 2(b)  i l l u s t r a t e s  t he  diffusion and recom- 
binat ion processes t h a t  occur when i n i t i a l  condition (2)  i s  used, t h a t  i s ,  when a 
mass of atoms i s  in se r t ed  a t  the i n l e t  plane and two-thirds of the  way from the  
i n l e t  plane. Here the  atoms d i f fuse  i n  both d i rec t ions  from the two-thirds point  
while a t  the  same time atoms are diffusing i n  a t  the  i n l e t  plane. It i s  observed 
t h a t  f o r  condition (2), t he  t r ans i en t  i s  already qui te  small (-0.063) a t  T = 0.1 
(see  f i g .  2 ( b ) ) ,  whereas, f o r  condition (l), t h e  t r ans i en t  has only decayed t o  
0.409 i n  twice as much time. 

Figures 2 (b ) ,  2 ( d ) ,  and 2 ( f )  apply t o  conditions specif ied by equation 
Figures 2 (a )  and 2(b) a r e  f o r  the case of zero dissociat ion frequency, 

10 



Figures 2(c) and 2(d) illustrate the transient part of the solution for the 
case where the dimensionless frequency at the inlet plane is ten (W/2rc  = 10) 
rather than zero and the dimensionless sink strength is zero (kr = O ) ,  that is, 
no recombination. It is noted that the time required for the transient to decay 
when the first condition is applied is more than eight times that required for 
the second condition. 

The situation tends to reverse itself for the higher values of W and kr 
as illustrated in figures 2(e) and 2(f) for One observes 
that the decay time for initial condition (1) is about one-half the time required 
in figure 2(c), but the time required for condition (2 )  (see fig. 2(f)) is 
increased by a factor of more than three. An increased time is required for the 
atoms to recombine and thus decrease their number to that required for the peri- 
odic variation. From these results, it would be anticipated that for values of 
kr 
the faster transient decay time. For sink strength values less than 1.5, the 
transient decay is faster when the initial condition is given by equation (14). 

W/2rc = 10 and kr = 10. 

greater than about 15, the initial condition specified by equation (l3)yields 

The two initial conditions specified could no doubt be improved upon in 
order to arrive more quickly at the periodic solution. In any event, the better 
initial conditions would depend on W and kr including, of course, the exact 
initial condition which is known only after the problem is solved. 

Solution - Periodic Part 

The proposed experiment that prompted the analysis contained in this report 
utilizes measurements made on the variation in concentration to determine the 
diffusion and recombination rates and for this reason it is of interest to view 
curves illustrating this variation, that is, curves illustrating the upper and 
lower bounds within which the concentration varies. The curves for varying sink 
strengths illustrated in figure 3 are projections of the concentration curves at 
various instants of time on the (p,!) plane after the transient has decayed and 
the periodic solution is dominant. These projections were obtained by plotting 
the values of the periodically varying concentration at twenty equidistant points 
in dimensionless time, in one period, using an automatic plotter. The resulting 
system o f  curves then define a set of upper and lower envelopes within which the 
concentration varies. The envelopes are dependent only on the values of the 
dimensionless parameter frequency W and sink strength kr. One observes in 
figure 3 that for increasing sink strength the mean values of the concentration 
variation become smaller, that is, the envelopes shift to lower values of concen- 
tration. This follows as a result of the greater loss of atoms due to the 
increasingly greater rate of recombination. One also observes that there is a 
decrease in the difference between the upper and lower envelopes; that is, there 
is a decrease in the amplitude of the variation in concentration that is due both 
to dimensionless frequency and sink strength. The functional dependence of the 
difference between the upper and lower envelopes on sink strength and frequency 
can be determined by defining a parameter tE, called the penetration depth, and 
then determining the dependence of this parameter on The penetration 
depth is defined as the distance from the inlet plane at which the amplitude of 

W and k,. 
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the variation in the concentration has decreased to some specified value, say 
compared to its value at the inlet plane. 
fraction and is given by 

E, 
The value E will be called the decay 

where p-(E) and pfin(E,) 
defining the variation in concentration illustrated in figure 3. 
are normalized such that 

are the values of the upper and the lower envelopes 
The equations 

The problem now is to determine the explicit dependence of 
W and kr by solving the implicit expression given by 

EE on the parameters 

The solution of 
upper and lower 

equation (19) is obtained by measuring the difference between the 
envelopes that are obtained from the periodic part of the solu-  

tion and finding that point where the difference is E. The corresponding value 
of 5 obtained is the penetration depth EB.  The results fromthese measure- 
ments are plotted in figures +(a) and 4(b) where is arbitrarily chosen as 
l/e and 1/4, respectively. 
versus dimensionless frequency W/27c for various values of the dimensionless 
sink strength. The features comon to both these figures and therefore independ- 
ent of the value of E are described as follows: One observes that for high 
frequencies the decrease in concentration variation occurs close to the inlet 
plane and is little affected by the sink strength k,. For example, when the 
dimensionless frequency W/27c 
characterized by EE occurs within about 1/10 of the diffusion tube length and 
depends very little on the value of the sink term parameter 
quency is reduced, there is a greater dependence of the depth parameter EE on 
sink strength, and the decay occws farther from the inlet. Also in both figures, 
one observes that when sink strength is large the decay occurs near the inlet 
plane and is little affected by frequency. 
noted that the greatest spread in the penetration depth with respect to sink 
strength is obtained at low frequencies. 

E 
These figures are plots of penetration depth EE 

is of order 20 or greater, the variation decrease 

k,. As the fre- 

From the preceding discussion it is 

DISCUSS I O N  

In the section that follows the mjor errors that occur in the numerical 
calculation will be analyzed. In the second section that follows a few remarks 
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will be made on the comparison of the closed-form solution given in reference 1, 
that was obtained from a Linearized sink term, with the results obtained from the 
numerical solution discussed in this report with a nonlinear sink term. The 
third section will include a few remarks on the application of the penetration 
depth to experimentally determine the diffusion and recombination rates. 

Numerical Errors 

The electronic computer cycles through the numerical equations a consider- 
able number of times before obtaining the periodic solution. For example, when 
N = 41, the computer cycled through the numerical equations 1922 times just to 
increase the dimensionless time from I- = 0 to T = 0.22 and obtain the data 
for figure 2(a). 
the numbers because of accumulated round-off errors. Also, since a solution is 
being obtained for a set of difference equations which depend on grid spacings, 
there is the further possibility that the final answers may be in error because 
of the large grid spacings. 

Such a large number of calculations may reduce the accuracy of 

It was possible to investigate the errors arising in the numerical calcula- 
tions by using as a comparison two independent closed-form solutions which are 
obtainable from degenerate forms of equations (4). 
results from setting zero forcing frequency as the boundary condition at the 
inlet plane to obtain p(0) = 1.0 (see eq. (kb)), and setting the dimensionless 
time derivative in equation (4a) equal to zero. The resulting time independent 
solution is an elliptic integral expressing the dimensionless concentration 
implicitly in terms of the dimensionless distance 5 (see appendix); that is, 

The first degenerate form 

p(E) 

where 

and 

C =  1.- 2 

The function 
argument cp and modulus C, and p(1) is the value of the concentration at the 
far boundary determined by solving equation (20) for p(1) when E = 0. The 
solution p( E )  corresponds to the steady-state solution of p( 6 , ~ )  obtained after 
transient decay for cases of the type shown in figures 2(a) and 2(b). 

F(cp,C) is the incomplete elliptic integral of the first kind with 



The second degenerate form f o r  which a closed-form solut ion i s  ava i lab le  i s  
the  case wherein the  s ink  s t rength  i s  s e t  equal t o  zero. Here the so lu t ion  of 
equation (ha) ,  obtained i n  the  l i m i t  when kr = 0, i s  given by equation (105) i n  
reference 1. For t he  concentration normalized s o  t h a t  the  maximum value of 
p ( k , ~ )  i s  1, we obtain 

Equation (21) corresponds t o  the  per iodic  so lu t ion  p(  5 , ~ )  obtained a f t e r  t he  
t r ans i en t  decay f o r  cases of the  type i l l u s t r a t e d  i n  f igures  2(c)  and 2 (d ) .  

The e r ro r s  i n  the  numerically determined s teady-state  solution, t h a t  is ,  the 
numerical so lu t ion  minus equation (20) a l l  divided by equation (20) ,  a r e  shown as 
a function of mesh s i z e  Ag i n  f igu re  5. This f igu re  i l l u s t r a t e s  the  errors 
j u s t  f o r  one example where the s ink s t rength  w a s  a r b i t r a r i l y  chosen equal t o  10. 
The upper curve gives the  percent e r ro r  of the  far boundary value of the dimen- 
s ion less  concentration and the  lower curve gives the  percent e r r o r  i n  the  concen- 
t r a t i o n  midway between the  boundary planes. The.worst e r r o r  due t o  a mesh occurs 
a t  the far boundary plane and i s  about 3 perdent f o r  Ag = 0.05 o r  N = 21 (see 
eq. (5a) ) .  
i n l e t  boundary plane i s  l e s s ,  and a t  the  midpoint the  e r r o r  i s  0.7 percent f o r  
the  same mesh s i z e .  It i s  in t e re s t ing  t o  observe t h a t  f o r  both values, the e r r o r  
does not change i n  s ign and appears t o  be l i n e a r l y  decreasing with smaller mesh 
s i z e .  

The e r r o r  i n  the  dimensionless concentration a t  points c loser  t o  the  

The e r r o r  i n  values of the concentration a t  the  far boundary plane as a 
function of s ink s t rength  i s  shown i n  f igure  6 f o r  spec i f i c  mesh sizes AE = 0.025 
and 0.04 ( N  = 41 and 26, respec t ive ly) .  I n  t h i s  f i gu re  the e r ro r s  i n  the  numeri- 
c a l  solut ion are a l s o  r e l a t e d  t o  values of the  concentration determined f rom 
equation (20) .  
l a rge  mesh s i zes  than for s m a l l  s i ze s .  This i s  indicated by the increase i n  
e r r o r  from 2.4 percent a t  
1 . 3  percent) while t he  corresponding increase f o r  Ag = 0.025 
2.2 percent (an increase of 0.8 percent) .  One a l s o  observes an abrupt decrease 
i n  the e r r o r  f o r  values of t he  s ink s t rength  less than 5 and the e r r o r  i s  negl i -  
g ib le  i n  the  numerical ca lcu la t ion  f o r  the  case of zero s ink s t rength.  

One observes a grea te r  dependence of e r r o r  on s ink s t rength  f o r  

kr = 10 t o  3.7 percent a t  kr  = 70 (an increase of 
i s  f rom 1 . 4  t o  

When equation (21) i s  used as the bas i s  of comparison it i s  possible t o  
obtain a check of the  error  i n  the  numerically determined penetration depth, but  
o n l y  f o r  ze ro  s ink  s t rength .  
0.067 ( N  = 16), the  e r r o r  i n  the penetration depth i s  small, only 0.01 percent, 
and depends very l i t t l e  on mesh s i ze .  This observation i s  consis tent  with the  
findings i l l u s t r a t e d  i n  f igu re  6 where it w a s  found t h a t  the e r r o r  was negl igible  
f o r  zero s ink  s t rength.  This small e r ro r  may be due t o  causes other than mesh 
s i ze .  It is  about t he  order of magnitude expected of round-off e r ro r s  and of 
errors due t o  inaccuracies i n  the  various subroutines used i n  programming the  
numerical equations f o r  t he  e lec t ronic  computer. With in t e rva l  spacings grea te r  

It i s  found t h a t  when the mesh s i ze  i s  grea te r  than 
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than 0.067 the error in penetration depth is large and erratic in nature. 
may be due to the fact that the corresponding large mesh size that results for 
the time variable AT (see eq. (loa)) makes a numerical differentiation of the 
concentration curves inaccurate; therefore the upper and lower envelopes defining 
the concentration variation are in error. This would then cause a large and 
erratic error in the determination of the penetration depth. 

This 

It is not possible, with the available closed-form solutions, to check the 
error of the penetration depth for sink strength values other than zero. It is 
expected, however, that any numerical errors that do occur would be less than the 
worst error that is found for the far boundary value of the concentration shown 
in figure 6, for two reasons: 
therefore should be partially subtracted (see eq. (19)); second, the penetration 
depth corresponds to values of the concentration closer to the inlet plane where 
error is less than the far boundary value of error (see fig. 5). 

First, all mesh size errors are of one sign and 

The Linear Sink Term as an Approximation to the Nonlinear Sink Term 

Since the first solution obtained (see ref. 1) is a closed-form solution for 
a linearized sink term, it is of interest to compare the linear solution obtained 
in reference 1 with the numerical solution for the nonlinear sink term. The non- 
linear sink term given by equation (66a) in reference 1 is 

The linear sink term is given by 

where the subscripts N and L are used here to differentiate between nonlinear 
and linear, respectively, and p is a constant which represents the average 
value of the solution for the nonlinear sink term. The expression from which 
the depth parameter can be obtained in the linear problem (see eq. (106) , ref. 1) 
is given by 

- 

where 



. .. - . 

The penetration depth curves obtained from equation (24) are compared with those 
obtained numerically in figure 7. The decay fraction E is l/e. From equation 
( 2 3 )  with ji = 1/2 
and 20 are approximations for the nonlinear sink term curves 
respectively. The curves shown in figure 7 for these corresponding values of kr 
and k; indicate that the linear approximation F = 1/2 is not good, but one 
does note that the results could be made to agree better by taking a different 
value for ji. This follows if one notes that a curve for k$ = 1.5 would be a 
good approximation for kr = 20 except at l o w  frequencies. One also observes 
that the results agree better for higher frequencies. This follows since as the 
frequency increases, the effect of the sink term on the penetration depth 
decreases. 

one observes that the linear sink term curves for k$ = 10 
kr = 20 and 40, 

Experimental Application of the Penetration Depth Results 

Inasmuch as the analysis contained in this report was pronrpted by a proposed 
experiment, a few remarks will be made on the application of the results to the 
determination of diffusion and recombination rates. 

The solutions giving penetration depth versus frequency with the sink 
strength as a parameter can be used in conjunction with experimentally determined 
values of penetration depth where the frequency, degree of dissociation, and par- 
tial number densities would be controlled, to obtain appropriate values for the 
sink strength and diffusion coefficients. It may be necessary to make a judi- 
cious choice for the inert gas that would be used in the system in order that 
D23 
regarding the equality of the intermolecular potentials in order to decrease the 
number of unknowns. This decision should depend in part on the uncertainty in 
measured values due to experimental errors. Also, wall reactions were neglected 
in the equations used in this report and therefore in an experiment consideration 
will have to be given to minimizing loss of atoms due to wall recombination. If 
the walls of a test cell are constructed of pyrex and if the pressure is not too 
low it is expected that the loss of atoms due to the wall reaction will be small 
compared to the losses due to homogeneous recombination. In this respect any 
effects due to the wall may possibly be handled by introduction of a correction 
term in the differential equation. 

(and perhaps also D13) would be known mr to make certain assumptions 

The results obtained for the penetration-depth as a function of frequency 
and sink strength given in this report apply only to the atoms in the ternary 
mixture of atoms, molecules, and an inert gas. The experiment outlined in refer- 
ence 1 makes use of vacuum ultraviolet absorption measurements on oxygen mole- 
cules; therefore the results obtained numerically may not be directly applicable. 
Direct use of the calculations requires that a narrow line source of radiation 
for atomic absorption be available if similar absorption techniques are to be 
applied to the atomic oxygen in the system. Comparable solutions are obtainable 
for oxygen molecules by a minor extension of the techniques used in this report. 
This extension is described in reference 1. 
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CONCLUDING REMARKS 

A numerical method has been developed t o  determine the per iodic  solut ion of 
a unidimensional t i m e  varying diffusion equation with a nonlinear s ink  t e r m  and 
unsteady boundary conditions. An i n i t i a l  condition that i s  not spec i f i ca l ly  
known i s  required i n  the  numerical procedure. It i s  shown t h a t  any a r b i t r a r y  
choice of i n i t i a l  condition merely results i n  a t r ans i en t  e f f e c t  t h a t  decays as 
the  t i m e  var iable  increases i n  value. The solut ion t h a t  remains i s  per iodic  and 
independent of the i n i t i a l  condition. For a given i n i t i a l  condition the  t r an -  
s i e n t  decay t i m e  i s  dependent both on the  frequency of t he  concentration var ia -  
t i o n  and on the s ink  s t rength.  

The per iodic  solut ion i s  used t o  obtain values of t he  penetration depth 
which i s  the  depth a t  which the amplitude of the  concentration var ia t ion  has 
decreased t o  some specif ied f r ac t ion  of i t s  i n l e t  value. The solut ions giving 
penetration depth versus frequency with the  s ink s t rength  as a parameter can be 
used i n  conjunction w i t h  experimentally determined values of penetration depth t o  
obtain appropriate values of the  s ink  s t rength  and diffusion coef f ic ien ts .  I n  
order t o  obtain maximum resolut ion i n  the determination of the desired rates it 
i s  necessary that  the  concentration var ia t ion  frequency be low. 

The er rors  t h a t  r e s u l t  f r o m  the numerical techniques used i n  obtaining the 
periodic solut ion can be control led by proper choice of mesh s i z e .  These e r ro r s  
are negligible i n  the r e s u l t s  given f o r  the penetrat ion depth. 

The system of equations t h a t  were solved i n  t h i s  report  are i n  a general  
form,  and, although continual reference w a s  made t o  a diffusion experiment, the  
r e s u l t s  are not so  r e s t r i c t e d .  The solut ions a re  applicable t o  any d i f fus ion  o r  
any physical problem tha t  can be described as a d i f fus ion  equation with a s ink  
t e r m .  The numerical method tha t  w a s  used i s  not r e s t r i c t e d  by the s ign of t he  
s ink  (source) t e r m  and the method may a l so  be extended t o  include any degree of 
nonl inear i ty  i n  the s ink  t e r m .  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  O c t .  23, 1963 
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APPENDIX A 

DERIVATION OF EQUATION (20) 

In the text, equation (20) was giv !A n without a description of the methods 
leading to its derivation. 
concentration of atoms ~ ( 6 )  in terms of the coordinate 5 for the steady-state 
problem that describes diffusion with recombination in the region between two 
planes, the inlet and far boundary planes. 
situation that exists when the atoms lost by recombination are balanced by the 
atoms gained by diffusion at each station between the two planes. In order to 
keep the inlet plane concentration, p(0) = 1, a constant, fresh atoms must be 
continually added at the inlet plane to replenish those that are lost. 
reaction of the atoms with the far boundary plane is assumed to be negligible. 
The basic differential equation that describes this problem is obtained by set- 
ting the time derivative in equation (ha) equal to zero to obtain the 
nonlinear ordinary differential equation given by 

Equation (20) relates implicitly the dimensionless 

The problem applies to the physical 

Chemical 

&/& 

The boundary conditions are given by equations (4b) and (4c) where the dissocia- 
tion frequency W in equation (4b) is set equal to zero,  that is, 

Since the problem excludes time dependence an expression for the initial condi- 
tion is, of course, not required. 

The solution is obtained by first multiplying both sides of equation (Al) by 
to obtain 

Equation (A4) is integrated and the constant of integration then determined using 
equation (A3). (')I to obtain a[ P ( 5 ) /P 

d6 
The resulting expression is solved for 
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(A5 

where 
The negative sign of the square root is required because the concentration is 
always decreasing. 

~(1) is the value of the dimensionless concentration at the far boundary. 

The integral form for equation (A5) is given by 

where 

The integral in equation (A6) is proportional to the incomplete elliptic integral 
of the first kind (see ref. 3); that is, 

where the argument and modulus are given, respectively, by 

Substitution of equation (A7) into equation (A6) yields 

where 



I1 I I1 l11111111ll1l1lll111l I111 

The value of 
l e t t i n g  
given by equation (A2) f o r  

p(1) i s  determined from the impl i c i t  expression obtained by first 
6 = 0 i n  equation (A8) and then subs t i t u t ing  the  boundary condition 

p(0) t o  obtain 

The constant 
Once p(1) i s  determined, equation (A8) can be solved t o  determine ~ ( 6 ) .  

p(1) i s  dependent only on the  value of t he  s ink  s t rength  k,. 

2 0  
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Figure 1.- Sketch i l l u s t r a t ing  the pertinent features  of the solution V(~,T). 
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(a) Initial condition given by equation (13) ; dimensionless frequency (W/21t )  = 0; dimensionless 
sink strength (kr )  = 10. 

Figure 2. - Isometric plots of dimensionless concentration p( E ,  T) showing transient decay for two 
different initial conditions and given values of dimensionless frequency ( W / 2 1 t )  and dimensionless 
sink strength (k,) . 







/------ 

(d) Initial condition given by equation (14) ; dimensionless frequency (W/2~r) = 10; dimensionless 
sink strength (kr) = 0. 

Figure 2. - Continued. 



(e) Initial condition given by equation (13) ; dimensionless frequency ( W / 2 f i )  = 10; dimensionless 
sink strength (kr )  = 10. 

Figure 2. - Continued. 



(f) Initial condition given by equation (14) ; dimensionless frequency ( W / ~ K )  = 10; dimensionless 
sink strength (kr) = 10. 

Figure 2.- Concluded. 
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E, dimensionless distance 
w I Y 

E, dimensionless distance 

(a) Dimensionless sink strength (kr) = 0; (b) Dimensionless sink strength (k,) = 0; 
dimensionless frequency (W/2x) = 1. dimensionless frequency (W/2x) = 5. 

Y 
E, dimensionless distance E, dimensionless distance 

(c) Dimensionless sink strength ( k r )  = 0; (a) Dimensionless sink strength (k,) = 0; 
dimensionless frequency (W/2x) = 10. dimensionless frequency ( W / ~ J ( )  = 15. 

Figure 3.- Steady-state concentration variation curves for various values of the 
dimensionless frequency and sink strength. 
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Y 

E. dimensionless distance 

(e) Dimensionless sink strength (kr) = 10; 
dimensionless frequency (W/2n) = 1. 

E. dimensionless distance 

(g) Dimensionless sink strength (k,) = 10; 
dimensionless frequency (W/&) = 10. 

V 

E. dimensionless distance 

(f) Dimensionless sink strength (k r )  = 10; 
dimensionless frequency (W/2x) = 5. 

Y 

E, dimensionless distance 

(h) Dimensionless sink strength (kr) = 10; 
dimensionless frequency (W/2n) = 15. 

Figure 3. - Continued. 



V 
E. dimensionless distance 

(i) Dimensionless sink strength (k,) = 20; (j) Dimensionless sink strength (k,) = 20; 
dimensionless frequency (W/2x) = 1. dimens iodes s frequency ( ~ / 2 7 1 )  = 5. 

V 
E, dimensionless distance 

V 
E, dimensionless distance 

(k) Dimensionless sink strength (kr )  = 20; (2) Dimensionless sink strength (k r )  = 20; 
dimensionless frequency ( w / ~ K )  = 10. dimensionless frequency ( ~ / 2 7 I )  = 15. 

Figure 3.- Concluded. 
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Figure 4.- Curves relating the depth parameter to the dimensionless frequency 
for various values of the nonlinear sink term coefficient k,. 
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Figure 5.- Curves showing the percent error in the numerically determined 

A t .  
steady-state solution p(E) relative to equation (20) for 5 = 1 and 
5 = 1/2 as a function of mesh size Sink strength, kr, is 10. 
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Fi .gure 6 . -  Curves showing the percent e r r o r  i n  the numerically determined far 

f o r  two spec i f ic  mesh s izes ,  Ag = 0.025 and 
boundary value of the concentration 
function of s ink s t rength k r  
0.04. 

p(1) r e l a t i v e  to '  equation (20) as a 
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k’, linear sink term coefficient 

_ _ _ _ _ _ _  k, nonlinear sink term coefficient 
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Figure 7.- Curves showing the comparison between depth parameters obtained from 
a linear approximation to the sink term and those obtained from the numerical 

- .  . . _  _ .  solution w i t h  a nodinear sink term. 
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